Publications by authors named "Scott D Cramer"

Systems biology approaches have been applied to prostate cancer to model how individual cellular and molecular components interact to influence cancer development, progression, and treatment responses. The integration of multi-omic experimental data with computational models has provided insights into the molecular characteristics of prostate cancer and emerging treatment strategies that have the potential to improve patient outcomes. Here, we highlight recent advancements that have emerged from systems modeling in prostate cancer.

View Article and Find Full Text PDF

Background: Prostate cancer is a leading cause of cancer-related deaths among men, marked by heterogeneous clinical and molecular characteristics. The complexity of the molecular landscape necessitates tools for identifying multi-gene co-alteration patterns that are associated with aggressive disease. The identification of such gene sets will allow for deeper characterization of the processes underlying prostate cancer progression and potentially lead to novel strategies for treatment.

View Article and Find Full Text PDF

Prostate cancer (PC) is the second leading cause of cancer death in men in the United States. While diversified and improved treatment options for aggressive PC have improved patient outcomes, metastatic castration-resistant prostate cancer (mCRPC) remains incurable and an area of investigative therapeutic interest. This review will cover the seminal clinical data supporting the indication of new precision oncology-based therapeutics and explore their limitations, present utility, and potential in the treatment of PC.

View Article and Find Full Text PDF

Unlabelled: There is a continued need to identify novel therapeutic targets to prevent the mortality associated with prostate cancer. In this context, mitochondrial Rho GTPase 2 (MIRO2) mRNA was upregulated in metastatic prostate cancer compared with localized tumors, and higher MIRO2 levels were correlated with poor patient survival. Using human cell lines that represent androgen-independent or -sensitive prostate cancer, we showed that MIRO2 depletion impaired cell growth, colony formation, and tumor growth in mice.

View Article and Find Full Text PDF

While many prostate cancer (PCa) cases remain indolent and treatable, others are aggressive and progress to the metastatic stage where there are limited curative therapies. Androgen receptor (AR) signaling remains an important pathway for proliferative and survival programs in PCa, making disruption of AR signaling a viable therapy option. However, most patients develop resistance to AR-targeted therapies or inherently never respond.

View Article and Find Full Text PDF

Prostate cancer genomic subtypes that stratify aggressive disease and inform treatment decisions at the primary stage are currently limited. Previously, we functionally validated an aggressive subtype present in 15% of prostate cancer characterized by dual deletion of and . Recent studies in the field have focused on deletion of and its role in androgen receptor (AR) chromatin distribution and resistance to AR-targeted therapy; however, is rarely lost without codeletion of .

View Article and Find Full Text PDF

A key principle of oncolytic viral therapy is that many cancers develop defects in their antiviral responses, making them more susceptible to virus infection. However, some cancers display resistance to viral infection. Many of these resistant cancers constitutively express interferon-stimulated genes (ISGs).

View Article and Find Full Text PDF

Autophagy, the process of macromolecular degradation through the lysosome, has been extensively studied for the past decade or two. Autophagy can regulate cell death, especially apoptosis, through selective degradation of both positive and negative apoptosis regulators. However, multiple other programmed cell death pathways exist.

View Article and Find Full Text PDF

The combined loss of and promotes aggressive prostate cancer by unknown mechanisms. Because both of these genes are lost genetically in prostate cancer, they cannot be directly targeted. We applied an established computational systems pharmacology approach (TRAP) to identify altered signaling pathways and associated druggable targets.

View Article and Find Full Text PDF

Background: Prostatic carcinoma metastatic to dura is commonly encountered at autopsy, but presenting as a dural or, especially parenchymal, brain metastasis during life is far less common. Our group has been interested in two immunohistochemical (IHC) markers previously shown to be downregulated in particularly aggressive primary prostatic carcinomas: CHD1 and MAP3K7. Here we assess protein expression in clinically-relevant CNS metastases.

View Article and Find Full Text PDF

Tumor cells require increased rates of cell metabolism to generate the macromolecules necessary to sustain proliferation. They rely heavily on NAD as a cofactor for multiple metabolic enzymes in anabolic and catabolic reactions. NAD also serves as a substrate for PARPs, sirtuins, and cyclic ADP-ribose synthases.

View Article and Find Full Text PDF

Although autophagy controls cell death and survival, underlying mechanisms are poorly understood, and it is unknown whether autophagy affects only whether or not cells die or also controls other aspects of programmed cell death. MAP3K7 is a tumor suppressor gene associated with poor disease-free survival in prostate cancer. Here, we report that Map3k7 deletion in mouse prostate cells sensitizes to cell death by TRAIL (TNF-related apoptosis-inducing ligand).

View Article and Find Full Text PDF

Prostate cancers with mutations to a protein called SPOP use an error-prone method to repair broken DNA strands.

View Article and Find Full Text PDF

Vitamin D [vit D; 1,25-(OH)2D] treatment improves survival and lung alveolar and vascular growth in an experimental model of bronchopulmonary dysplasia (BPD) after antenatal exposure to endotoxin (ETX). However, little is known about lung-specific 1,25-(OH)2D3 regulation during development, especially regarding maturational changes in lung-specific expression of the vitamin D receptor (VDR), 1α-hydroxylase (1α-OHase), and CYP24A1 during late gestation and the effects of antenatal ETX exposure on 1,25-(OH)2D3 metabolism in the lung. We hypothesized that vit D regulatory proteins undergo maturation regulation in the late fetal and early neonatal lung and that prenatal exposure to ETX impairs lung growth partly through abnormal endogenous vit D metabolism.

View Article and Find Full Text PDF

Prostate cancer subtypes are poorly defined and functional validation of drivers of ETS rearrangement-negative prostate cancer has not been conducted. Here, we identified an ETS(-) subtype of aggressive prostate cancer (ERG(-)MAP3K7(del)CHD1(del)) and used a novel developmental model and a cell line xenograft model to show that cosuppression of MAP3K7 and CHD1 expression promotes aggressive disease. Analyses of publicly available prostate cancer datasets revealed that MAP3K7 and CHD1 were significantly codeleted in 10% to 20% of localized tumors and combined loss correlated with poor disease-free survival.

View Article and Find Full Text PDF

Unlabelled: A major challenge to oncolytic virus therapy is that individual cancers vary in their sensitivity to oncolytic viruses, even when these cancers arise from the same tissue type. Variability in response may arise due to differences in the initial genetic lesions leading to cancer development. Alternatively, susceptibility to viral oncolysis may change during cancer progression.

View Article and Find Full Text PDF

Purpose: Prostate cancer (PCa) is the second most common cause of cancer-related death among men in the United States. Due to the lipid-driven metabolic phenotype of PCa, imaging with 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) is suboptimal, since tumors tend to have low avidity for glucose.

Procedures: We have used the fat oxidation inhibitor etomoxir (2-[6-(4-chlorophenoxy)-hexyl]oxirane-2-carboxylate) that targets carnitine-palmitoyl-transferase-1 (CPT-1) to increase glucose uptake in PCa cell lines.

View Article and Find Full Text PDF

Prostate cancer is the most commonly diagnosed malignancy among Western men and accounts for the second leading cause of cancer-related deaths. Prostate cancer tends to grow slowly and recent studies suggest that it relies on lipid fuel more than on aerobic glycolysis. However, the biochemical mechanisms governing the relationships between lipid synthesis, lipid utilization, and cancer growth remain unknown.

View Article and Find Full Text PDF

Androgen receptor (AR) signaling is vital to the development and function of the prostate and is a key pathway in prostate cancer. AR is differentially expressed in the stroma and epithelium, with both paracrine and autocrine control throughout the prostate. Stromal-epithelial interactions within the prostate are commonly dependent on AR signaling and expression.

View Article and Find Full Text PDF

Tumor microenvironment (TM) is an essential element in prostate cancer (PCA), offering unique opportunities for its prevention. TM includes naïve fibroblasts that are recruited by nascent neoplastic lesion and altered into 'cancer-associated fibroblasts' (CAFs) that promote PCA. A better understanding and targeting of interaction between PCA cells and fibroblasts and inhibiting CAF phenotype through non-toxic agents are novel approaches to prevent PCA progression.

View Article and Find Full Text PDF

Breast cancer is the most common non-cutaneous malignancy in American women, and better preventative strategies are needed. Epidemiological and laboratory studies point to vitamin D3 as a promising chemopreventative agent for breast cancer. Vitamin D3 metabolites induce anti-proliferative effects in breast cancer cells in vitro and in vivo, but few studies have investigated their effects in normal mammary epithelial cells.

View Article and Find Full Text PDF

Background: This study sought to identify novel effectors and markers of localized but potentially life-threatening prostate cancer (PCa), by evaluating chromosomal copy number alterations (CNAs) in tumors from patients who underwent prostatectomy and correlating these with clinicopathologic features and outcome.

Methods: CNAs in tumor DNA samples from 125 patients in the discovery cohort who underwent prostatectomy were assayed with high-resolution Affymetrix 6.0 single-nucleotide polymorphism microarrays and then analyzed using the Genomic Identification of Significant Targets in Cancer (GISTIC) algorithm.

View Article and Find Full Text PDF

More than 30% of primary prostate cancers contain a consensus deletion of an approximately 800 kb locus on chromosome 6q15.1. The MAP3K7 gene, which encodes TGF-β activated kinase-1 (Tak1), is a putative prostate tumor suppressor gene within this region whose precise function remains obscure.

View Article and Find Full Text PDF