Publications by authors named "Rainer Hedrich"

The Arabidopsis phloem channel AKT3 is the founder of a subfamily of shaker-like plant potassium channels characterized by weak rectification, Ca(2+) block, proton inhibition, and, as shown in this study, K(+) sensitivity. In contrast to inward-rectifying, acid-activated K(+) channels of the KAT1 family, extracellular acidification decreases AKT3 currents at the macroscopic and single-channel levels. Here, we show that two distinct sites within the outer mouth of the K(+)-conducting pore provide the molecular basis for the pH sensitivity of this phloem channel.

View Article and Find Full Text PDF

Plants growing in close association with N(2)-fixing bacteria are able to overcome growth limitations in N-depleted soils. The molecular mechanism by which free-living, N(2)-fixing bacteria promote plant growth is still a matter of debate. By inoculating N-depleted tomato (Lycopersicon esculentum Mill.

View Article and Find Full Text PDF

The growth hormone auxin is a key regulator of plant cell division and elongation. Since plants lack muscles, processes involved in growth and movements rely on turgor formation, and thus on the transport of solutes and water. Modern electrophysiological techniques and molecular genetics have shed new light on the regulation of plant ion transporters in response to auxin.

View Article and Find Full Text PDF

Leaf-moving organs, remarkable for the rhythmic volume changes of their motor cells, served as a model system in which to study the regulation of membrane water fluxes. Two plasma membrane intrinsic protein homolog genes, SsAQP1 and SsAQP2, were cloned from these organs and characterized as aquaporins in Xenopus laevis oocytes. Osmotic water permeability (P(f)) was 10 times higher in SsAQP2-expressing oocytes than in SsAQP1-expressing oocytes.

View Article and Find Full Text PDF

Ion channels in roots allow the plant to gain access to nutrients. The composition of the individual ion channels and the functional contribution of different alpha-subunits is largely unknown. Focusing on K(+)-selective ion channels, we have characterized AtKC1, a new alpha-subunit from the Arabidopsis shaker-like ion channel family.

View Article and Find Full Text PDF

Here, we discuss why guard cells in intact plants respond to environmental signals in a different way than guard cells in epidermal strips, or protoplasts thereof. In intact leaves stomatal opening is counteracted by epidermal cells that press against the guard cells. Changes in the turgor of epidermal cells therefore can alter the stomatal aperture.

View Article and Find Full Text PDF

In a search for potassium channels involved in light- and clock-regulated leaf movements, we cloned four putative K channel genes from the leaf-moving organs, pulvini, of the legume Samanea saman. The S. saman SPOCK1 is homologous to KCO1, an Arabidopsis two-pore-domain K channel, the S.

View Article and Find Full Text PDF

The Arabidopsis double pore K+ channel KCO1 was fused to green fluorescent protein and expressed in tobacco protoplasts. Microscopic analysis revealed a bright green fluorescence at the vacuolar membrane. RT-PCR experiments showed that KCO1 is expressed in the mesophyll.

View Article and Find Full Text PDF