Malnutrition is a major challenge globally, and groundnut is a highly nutritious self-pollinated legume crop blessed with ample genomic resources, including the routine deployment of genomic-assisted breeding. This study aimed to identify genomic regions and candidate genes for high iron (Fe) and zinc (Zn) content, utilizing a biparental mapping population (ICGV 00440 × ICGV 06040;). Genetic mapping and quantitative trait locus (QTL) analysis (474 mapped single-nucleotide polymorphism loci; 1536.
View Article and Find Full Text PDFSeed size is not only a yield-related trait but also an important measure to determine the commercial value of groundnut in the international market. For instance, small size is preferred in oil production, whereas large-sized seeds are preferred in confectioneries. In order to identify the genomic regions associated with 100-seed weight (HSW) and shelling percentage (SHP), the recombinant inbred line (RIL) population (Chico × ICGV 02251) of 352 individuals was phenotyped for three seasons and genotyped with an Axiom_ array containing 58K SNPs.
View Article and Find Full Text PDFProduction of phosphorus efficient genotypes in groundnut can improve and also reduces environmental pollution. Identification of P-efficient groundnut genotypes is a need of the hour to sustain in P-deficient soils. The pot experiment showed significant differences between genotypes (G) and treatments (T) for all the traits and G × T interaction for majority of traits.
View Article and Find Full Text PDFSeed weight in groundnut (Arachis hypogaea L.) has direct impact on yield as well as market price because of preference for bold seeds by consumers and industry, thereby making seed-size improvement as one of the most important objectives of groundnut breeding programs globally. Marker-based early generation selection can accelerate the process of breeding for developing large-seeded varieties.
View Article and Find Full Text PDF