Publications by authors named "M Robinson-Agramonte"

Experimental and clinical studies have indicated a potential role of the protein S100β in the pathogenesis and phenotype of neurodegenerative diseases. However, its impact on spinocerebellar ataxia type 2 (SCA2) remains to be elucidated. The objective of the study is to determine the serum levels of S100β in SCA2 and its relationship with molecular, clinical, cognitive, and peripheral inflammatory markers of the disease.

View Article and Find Full Text PDF

Neuropsychiatric manifestations of viral infections (both per se and secondary to the neuroinflammatory reaction of the host) are mainly attributed to immunological reactions, so many aspects of their pathogenesis are still nuclear. Some novel therapeutic strategies are progressively emerging in which a vaccination may be having a particular impact on recovery and reduction of death. In this context, it is accepted that the SARS-CoV-2 virus is profoundly neurotropic and neuroinvasive, with various effects on the nervous system, although there is no complete understanding of the mechanism of neuroinvasion, brain injury, or short- or long-term neuropsychiatric sequelae.

View Article and Find Full Text PDF

Congenital myopathies (CMs) are a group of diseases that primarily affect the muscle fiber, especially the contractile apparatus and the different components that condition its normal functioning. They present as muscle weakness and hypotonia at birth or during the first year of life. Centronuclear CM is characterized by a high incidence of nuclei located centrally and internally in muscle fibers.

View Article and Find Full Text PDF

Background: The role of peripheral inflammation in spinocerebellar ataxia type 2 (SCA2) is unknown.

Objective: The objective of this study was to identify peripheral inflammation biomarkers and their relationship with the clinical and molecular features.

Methods: Blood cell count-derived inflammatory indices were measured in 39 SCA2 subjects and their matched controls.

View Article and Find Full Text PDF

Somatic human cells can divide a finite number of times, a phenomenon known as the Hayflick limit. It is based on the progressive erosion of the telomeric ends each time the cell completes a replicative cycle. Given this problem, researchers need cell lines that do not enter the senescence phase after a certain number of divisions.

View Article and Find Full Text PDF