Gender-affirming hormone therapy (GAHT) relies on exogenous hormones to produce hormonal milieus that achieve and/or maintain embodiment goals. Another potential route to these endpoints is transplantation of novel steroidogenic tissue. To develop a pre-clinical model, we asked whether different-sex gonad transplants can be functionally integrated into the adult mouse hypothalamic-pituitary-gonadal (HPG) axis.
View Article and Find Full Text PDFThe concept of the ischaemic penumbra - stroke tissue with the potential to survive - has opened the door to a wide range of experimental strategies that could benefit the recovery of patients after a stroke. In this study, we used proteomic analysis to examine how remote ischaemic postconditioning (RIPC) mediates a shift from a vulnerable to a tolerant penumbra. We identified 450 differentially abundant proteins between the control group and the groups subjected to ischaemia via middle cerebral artery occlusion with or without RIPC during infarct expansion.
View Article and Find Full Text PDFPurpose/aim: Some youth seek puberty suppression to prolong decision-making prior to starting hormone therapy to help align their physical sex characteristics with their gender identity. During peripubertal growth, connective tissues such as tendon rapidly adapt to applied mechanical loads (e.g.
View Article and Find Full Text PDFStudy Question: How does testosterone gender-affirming hormone therapy (T-GAHT) impact breeding success in female mice?
Summary Answer: T-GAHT causes reversible subfertility in female mice and persistent changes to reproductive tract anatomy, gene expression, and hormone receptors.
What Is Known Already: Adult female mice implanted with capsules containing 10 mg of testosterone mimic many aspects of reproductive phenotypes of T-GAHT patients, who may desire future gestation while pausing T-GAHT. In mice, oocytes retrieved from T-GAHT mice had decreased IVF rates, and T cessation prior to stimulation improved these outcomes.
The diffusive gradient in thin films technique (DGT), with a resin gel based on Lewatit® FO 36 was used for the first time to predict arsenic (As) bioavailability in soils collected in different environmental contexts. The predicted bioavailability, determined by fluxes to DGT, was compared with the bioavailability and bioaccumulation in the plants (Calendula officinalis), where a strong correlation was observed (r = 0.8857 (C/C) and r = 0.
View Article and Find Full Text PDF