Tire road wear particles (TRWP) and microplastics (MP) are increasingly present in the environment due to anthropogenic sources like industrial activities and road traffic. Their load is high in urban sediments and more specifically in stormwater management infrastructure such as detention basins. Eleven detention basins featured by contrasting land uses (industrial, urban, agricultural, and heterogeneous) were sampled in a French metropolitan city to examine how land use influences the presence of TRWP, MP, and metals in these basins.
View Article and Find Full Text PDFThe rising interest in Rooftop Agriculture (RA) has stemmed a demand for sustainable, lightweight alternatives to peat as plant growing media. Co-composting organic waste with biochar could represent a solution with reduced environmental impact. However, knowledge gaps remain regarding the food safety and environmental performance of these materials.
View Article and Find Full Text PDFMicroplastics (MPs) are often detected in river sediment, but the processes that lead to their long-term archiving need more investigation. In this study, the evolution of MPs buried in sediments was explored in a river segment with a diversity of deposition conditions. Two cores were collected on a high island -flooded only during overbank episodes- and in a semi-active channel also flooded during moderate-water periods.
View Article and Find Full Text PDFPerformic acid (PFA), widely recognized for its disinfectant properties in wastewater, shows selective and limited reactivity in oxidizing micropollutants. This study investigates the activation of PFA through UV-C photolysis to generate an advanced oxidation process (UV-C/PFA) and enhance the degradation of six pharmaceuticals: lidocaine, furosemide, sulfamethoxazole, diclofenac, acetaminophen, and carbamazepine. The synergy of UV-C photolysis with PFA enhances the removal of PFA-persistent pharmaceuticals.
View Article and Find Full Text PDFPlastic pollution in rivers is a major source for plastic pollution into the ocean. However, it is now recognized that plastics may accumulate in rivers for years, especially in estuaries, before reaching the ocean. This long residence time favours fragmentation of macroplastics into smaller and smaller pieces, but relative data are still carse.
View Article and Find Full Text PDF