Publications by authors named "J D Joannopoulos"

Despite advancements in wearable technologies, barriers remain in achieving distributed computation located persistently on the human body. Here a textile fibre computer that monolithically combines analogue sensing, digital memory, processing and communication in a mass of less than 5 g is presented. Enabled by a foldable interposer, the two-dimensional pad architectures of microdevices were mapped to three-dimensional cylindrical layouts conforming to fibre geometry.

View Article and Find Full Text PDF

Quantum field theory suggests that electromagnetic fields naturally fluctuate, and these fluctuations can be harnessed as a source of perfect randomness. Many potential applications of randomness rely on controllable probability distributions. We show that vacuum-level bias fields injected into multistable optical systems enable a controllable source of quantum randomness, and we demonstrated this concept in an optical parametric oscillator (OPO).

View Article and Find Full Text PDF

The quantization of the electromagnetic field leads directly to the existence of quantum mechanical states, called Fock states, with an exact integer number of photons. Despite these fundamental states being long-understood, and despite their many potential applications, generating them is largely an open problem. For example, at optical frequencies, it is challenging to deterministically generate Fock states of order two and beyond.

View Article and Find Full Text PDF

Flatbands have become a cornerstone of contemporary condensed-matter physics and photonics. In electronics, flatbands entail comparable energy bandwidth and Coulomb interaction, leading to correlated phenomena such as the fractional quantum Hall effect and recently those in magic-angle systems. In photonics, they enable properties including slow light and lasing.

View Article and Find Full Text PDF

Fabrics, by virtue of their composition and structure, have traditionally been used as acoustic absorbers. Here, inspired by the auditory system, we introduce a fabric that operates as a sensitive audible microphone while retaining the traditional qualities of fabrics, such as machine washability and draping. The fabric medium is composed of high-Young's modulus textile yarns in the weft of a cotton warp, converting tenuous 10-atmosphere pressure waves at audible frequencies into lower-order mechanical vibration modes.

View Article and Find Full Text PDF