Publications by authors named "J Colomer"

Recent research confirmed the significant role turbidity currents play in transporting microplastics (MPs) over long distances in aquatic environments. However, only a limited number of studies have specifically addressed the transport dynamics of microfibers (MFs). These synthetic fibers present unique challenges due to their distinctive physical characteristics, such as high aspect ratios, flexibility, and low densities compared to natural sediments, which influence their behavior, settling patterns, and environmental fate.

View Article and Find Full Text PDF

To expand the possible applications, chemical vapor deposition grown graphene needs to be transferred to appropriate substrates such as a silicon wafer. Although enormous efforts have been devoted to transfer graphene to various substrates using many different methods, the quality of the final product is still insufficient. We develop a new process named semi-dry transfer, which combines wet etching and dry transfer to obtain graphene with a clean interface with the substrate.

View Article and Find Full Text PDF

The widespread distribution of microplastics (MP) in aquatic systems highlights the need for a clear understanding of how they are transported and accumulate on the bottom of water bodies. Developing predictive models for MP dispersion, sedimentation, and bioaccumulation is crucial for informing regulatory decisions and mitigating the impact of MP and related pollutants. Among the key parameters, MP settling velocity is considered the most critical for predicting their behavior in aquatic environments.

View Article and Find Full Text PDF

The inappropriate disposal of plastic materials and their slow decomposition into microplastics (MP) pollutes aquatic ecosystems, leading to toxic effects on organisms. MP can have different shapes and be made from different polymeric materials; being carbon-based polymers the common ones. The toxicity associated with such MP has led to the need to search for alternative polymers with faster degradation times.

View Article and Find Full Text PDF

Aquatic environments are highly polluted due to the anthropogenic pressures associated with large populations. Among these ecosystems, coastal lagoons are particularly sensitive to anthropogenic disturbances. The Mar Menor is an example of such an ecosystem, with an extremely degraded status with high levels of anthropogenic eutrophication.

View Article and Find Full Text PDF